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H I G H L I G H T S
� A new epidemiological model for bark beetle outbreaks is developed.

� This model considers beetle aggregation dynamics and tree resistance to infestation.
� The resulting model is described by a differential equation with discontinuous right-hand side.
� Conditions that relate tree resistance, forest regeneration rate, rate of infestation by beetles, and immigration to the forest state are given.
� Analytical conditions when forest dies, recovers, or infestation becomes endemic are given.
� The case of infestation spread between patches is studied using a two stand system.
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a b s t r a c t

Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of
environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic
change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore,
dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by
beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance
and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for
bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several
distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical
system that tracks populations of uninfested and infested trees. A limiting case of the model is a dis-
continuous function of state variables, leading to solutions in the Filippov sense. The model assumes an
extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered
for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while
the second considers two forest stands with beetle dispersal between them. For the seed-bank driven re-
cruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle
immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration
rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy
forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions
between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion,
which later leads to a regional beetle outbreak in the resistant stand.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Tree-killing bark beetles (Coleoptera: Curculionidae, Scolyti-
nae) are important disturbance agents affecting coniferous forest
ecosystems, and population outbreaks have resulted in extensive,
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landscape scale tree mortality events globally (Schelhaas et al.,
2003; Meddens et al., 2012). In their native habitats, bark beetle-
caused tree mortality, and its interactions with other dis-
turbances including fire, play key roles in forest succession,
species composition, and nutrient cycling (Hicke et al., 2013;
Hansen, 2014). Recently, however, changing climate is altering
bark beetle outbreak dynamics indirectly, through effects to host
trees (Chapman et al., 2012; Gaylord et al., 2013; Hart et al.,
2014), and directly, by influencing beetle phenology, voltinism
and the probability of survival (Bentz et al., 2010; Safranyik et al.,
2010; Bentz et al., 2014; Weed et al., 2015). With continued
changes in climate, trajectories of future forest succession will be
altered in ways that could have significant negative impacts on
other native species as well as on biodiversity in general (Bentz
et al., 2010; Fettig et al., 2013).

The biology of tree killing bark beetles is complex and vari-
able. Most species interact in mutualistic relationships with
fungi, bacteria, mites and other organisms that provide protec-
tion and nutrition, and help in detoxifying host plant chemical
defenses (Boone et al., 2013; Hofstetter et al., 2015; Therrien
et al., 2015). Native host tree species exhibit formidable con-
stitutive and induced defenses that protect them from bark
beetle attacks when beetle population levels are low (Raffa et al.,
2008). These defenses, however, can be overcome as beetle
numbers increase (Boone et al., 2011). As a result, many tree-
killing bark beetle species have evolved chemically mediated
aggregative behaviors that depend on host tree chemicals, and
allow them to attack en masse and at higher densities than would
be possible in the absence of coordination (Raffa et al., 2008). In
contrast, some other bark beetle species lack the feedback me-
chanisms that facilitate mass attacks and instead colonize host
trees that have reduced defenses due to a variety of stressors
such as drought, fire or wind injury, and pathogens. The interplay
between the threshold dependent colonization success and
beetle density, combined with the unique aggregative strategies
exhibited by many bark beetle species, leads to complex beetle
outbreak dynamics.

The spatial and temporal dynamics of bark beetle population
outbreaks will vary across the range of a given species, and also
with the level of aggressiveness among species. Population out-
breaks of those species without the feedback mechanisms that
drive aggregative attacks are rare, and these species exhibit little
inter-annual variability in abundance. There are exceptions,
however, including a large drought-driven outbreak of Ips species
in the southwestern United States between 2002 and 2004
(Santos and Whitham, 2010). When drought conditions subsided,
so did the population outbreak. In contrast, species that exhibit
feedback mechanisms facilitating aggregation of large numbers
of beetles in order to successfully colonize healthy trees (i.e.,
aggressive species), including Dendroctonus ponderosae and D.
frontalis, exhibit considerable temporal variability in abundance.
Populations can exist at low levels for many years with often
rapid eruptions to outbreak levels as a result of population in-
dependent processes such as weather or delays, and non-
linearities in density-dependent processes (Berryman, 1982;
Martinson et al., 2013). Although the triggers for outbreaks of
these aggressive species are varied and not well understood, tree
resistance and weather can play large roles. The most resistant
trees often also have the greatest food resource for developing
beetles but require mass attacks to overwhelm the defenses.
Compromised defenses through stressors that include drought
(Anderegg et al., 2015) and pathogens (Goheen and Hansen,
1993) can result in a tree being overwhelmed by fewer beetles.
This can lead to build up of population in the less resistant trees
and eventually becoming large enough to attack more vigorous
trees with greater food resources. Indeed, large scale outbreaks of
aggressive species require large expanses of relatively vigorous
host trees (Fettig et al., 2014). In contrast, species that are in-
capable of attacking vigorous trees are often found in areas
where trees grow on marginal sites and stressed trees are com-
monly available. For both aggressive and less aggressive beetle
species, weather that is favorable for survival and seasonality of
beetles and their associates is also required for outbreak initia-
tion (Bentz et al., 2014; Addison et al., 2015; Weed et al., 2015).
The complex interaction of tree resistance and weather can result
in considerable intra-range variation in population dynamics of a
given species as environmental conditions that influence host
tree resistance and beetle population dynamics vary temporally
and spatially. Low host tree resistance can influence the initiation
of outbreaks of aggressive bark beetle species and can sustain
outbreaks of less aggressive species.

To better understand the influence of aggressive attacks on
trees, we use a susceptible/infective (S/I) model to explore the
long-term dynamic interactions between forests ecosystems and
bark beetle population dynamics. We assume that tree recruit-
ment is not limited by seeds. We focus our analysis on the effect of
tree resistance on the forest state. In particular, we show that,
when resistance is low, the forest can be either beetle-free, or can
have an endemic beetle population depending on forest history,
while, for high resistance, the forest will be beetle-free.

1.1. Review of existing models

Several models of bark beetle population dynamics already
exist. Here we review and compare the essential features of these
models in order to put our current study into context. Given the
importance of temperature in not only triggering but also sus-
taining bark beetle outbreaks, several models have been devel-
oped that incorporate temperature alone (Gilbert et al., 2004;
Regniere and Bentz, 2007; Friedenberg et al., 2007) and the
combined effects of temperature and host trees (Powell and Bentz,
2009, 2014) on bark beetle population success. For the purpose of
this article, however, we restrict ourselves to consideration of
simple, strategic models without the effects of climate that are
amenable to mathematical analysis of general system properties.
To facilitate comparison, we consider similarities and differences
in three structural aspects: the representation of forest structure
and dynamics, the relationship between beetle density and tree
death, and the relationship between tree death and new beetle
production.

Because we are interested in the role of host resistance in long-
term outbreak dynamics, sensible choices about the representa-
tion of natural forest structure and regeneration are essential.
Depending on the perspective and scenario under analysis, pre-
vious modeling efforts have focused on different aspects of forest
structure. Berryman et al. (1984) and Økland and Bjørnstad (2006),
for example, modeled a live forest class, and a transient, newly
killed tree class that they assumed was not resistant to beetles.
Heavilin and Powell (2008) also allowed for two forest classes that
differed in their resistance, although, in this study, the less re-
sistant class was allowed at least some level of resistance. More
recently, Duncan et al. (2015) developed yet another two-class
model. In this case, however, susceptible and resistant classes
were mechanistically linked to forest age structure. In reality, of
course, stands can be composed of many different types of trees
with varying resistance levels. Lewis et al. (2010) accounted for
this by allowing any possible distribution of vigor within a stand.
Unfortunately, total generality comes at the expense of compli-
cated and analytically intractable models. In the current study, we
return to a simpler representation of internally homogeneous
forest classes or cohorts consistent with the treatment by Heavilin
and Powell (2008) and Duncan et al. (2015).
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The crucial mechanism of outbreak initiation is that beetle
density exceeds a threshold so that beetles can successfully attack
the dominant cohort of trees. One possibility is that resistance of
the dominant cohort changes over time. For example, Berryman
et al. (1984) assumed that resistance decreases as live stem density
increases. In this model, remaining trees regain resistance to at-
tack when an outbreak thinned a stand. Although thinned stands
may be less susceptible to attack at low population levels, even
thinned stands can be heavily attacked during outbreaks (Fettig
et al., 2014). However, in reality, old trees are more susceptible to
most tree-killing bark beetles than are young trees, regardless of
stand density. An alternative method of varying resistance over
time is to explicitly model the transition from highly resistant
young trees to more susceptible old trees, as was done in Heavilin
and Powell (2008).

Although tree resistance changes dynamically through time
due to processes like aging and crowding, certain forest stands are
inherently more or less resistant as a result of environmental
factors, e.g., water stress (Anderegg et al., 2015). This spatial aspect
of tree resistance has been less well studied from a modeling
perspective. Nevertheless, the role of environmental conditions in
driving beetle outbreaks will likely become increasingly important
as global climatic change alters environmental factors, for example
by enlarging regions of drought stress. In this study, rather than
focusing on aging and crowding as drivers of outbreak cycles, we
instead focus on how spatial and environmental drivers influence
host tree resistance and subsequent bark beetle outbreak
dynamics.

A final aspect of forest structure and dynamics is regeneration.
One approach to modeling forest regeneration (Berryman et al.,
1984; Økland and Bjørnstad, 2006) is a standard density-depen-
dent growth model, where growth rate is proportional to the
abundance of adult trees, and adult density increases to a carrying
capacity. However, pines, in particular, are characteristically shade
intolerant, and many species such as lodgepole pine, Pinus con-
torta, are characterized by their maintenance of large seed banks
of serotinous cones that do not germinate until after a stand re-
placing disturbance (Johnson and Fryer, 1989). We therefore sug-
gest that a model without recruitment limitation of the tree po-
pulation may be a better representation of forest dynamics in
many of the systems susceptible to aggressive bark beetle
outbreaks.

In practice, beetle population density is rarely monitored di-
rectly. Instead, the number or proportion of infested trees is used
as a proxy for population density (sensu Meddens et al., 2012). To
build a simple model that can be compared to data, we follow
Heavilin and Powell (2008) and assume that the number of beetles
emerging from each successfully attacked tree is independent of
the number of beetles that attacked the tree. This assumption is
met if the number of beetles required for successful attack is
greater than or equal to the number of beetles that can completely
exploit tree resources. Other models (Berryman et al., 1984; Powell
et al., 1996; Økland and Bjørnstad, 2006; Lewis et al., 2010) have
explicitly included intraspecific competition, thereby allowing a
more complex relationship between attacking and emerging
beetles. Again, however, this detail comes at the expense of model
transparency and tractability, thus we prefer the simpler for-
mulation in Heavilin and Powell (2008) and leave more compli-
cated relationships between beetle density and tree infestation for
a future study.

When stands are healthy, with a majority of trees that are
resistant to beetle attack, it is difficult for low numbers of
beetles to overcome tree resistance and colonize stands. Ag-
gressive beetle species, however, are capable of killing trees in
resistant stands following a trigger, as described above, and
population grows to the outbreak phase (Raffa et al., 2008). Our
goal in this paper is to develop a qualitative understanding of
how a population outbreak may be facilitated by a three step
process. First, there is successful colonization of highly stressed
or compromised trees that have little resistance to bark beetles.
Second, there is a build up of beetle densities as beetles exploit
these weakened trees and subsequent spread to surrounding
healthy trees. Third, these elevated populations of beetles
moving into surrounding healthy trees exceed a threshold and
these trees therefore succumb, continuing to feed the expanding
epidemic.

Our approach starts by building a detailed mechanistic
model for beetle behavior and reproduction and tree dynamics
in a single stand. This model is based on simple ideas from
epidemiology, extended to include nonlinear resistance
thresholds and aggregation (Section 2). To analyze this model,
we exploit the very different time scales for beetle behavior
and reproduction relative to tree growth. This allows us to use
singular perturbation arguments to show how beetle popula-
tion dynamics exhibit properties such as bistability and hys-
teresis. Analytical insight of the properties comes from a lim-
iting case that relies on ideas from discontinuous dynamical
systems. The three-step colonization process is then under-
stood using a model that describes dynamics in two adjacent
stands, one with higher resistance to beetles, and one with
lower resistance (Section 3). Using this model, we give analy-
tical conditions that can give rise to a regional outbreak in the
resistant stand.
2. One-stand models

We begin by considering a single stand of trees with uniform
resistance. We assume that the trees within this stand can be
either bark beetle free, and thus “susceptible”, (S), to infestation,
or else already colonized by beetles, and thus productively “in-
fected”, (I). In what follows we replace “infected” by “infested”
which is a more appropriate term in this context. The movement
of a tree from the susceptible class to the infested class is then
assumed to depend on a sequence of beetle-related events. First,
the tree must be found by free-flying beetles, (B), that settle
upon its surface, and begin to bore through the bark. Next, these
attacking beetles, (A), must effectively survive host tree de-
fenses (e.g., resin) and gain access to the cambium layer. No-
tably, when the number of beetles per tree is low, individual
beetles almost never surmount host defenses, and thus trees
only rarely become infested; however as the number of beetles
per tree increases, so too does the probability that host tree
defenses will be overwhelmed. It is only after beetles have
successfully colonized a tree that we consider the tree to be in
the infested class. This leads to the following set of four coupled
differential equations:

σ β

β σ

λ μ

λ β

= ( ) − − ( )

= ( ) − −

= − − +

= − − ( ) ( )

dS
dt

G S I S A S S

dI
dt

A S S I dI
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dt
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dA
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BS rA A S A

, /
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where G is a function describing the rate of recruitment of new,
susceptible trees within the stand, β is a function describing
the rate at which susceptible trees transition into the infested
class, λ is the per beetle per tree rate at which beetles en-
counter healthy trees, e is the rate at which beetles emerge



Table 1
State variables.

Symbol Units Dimension Definition

S trees per hectare length�2 Density of susceptible (beetle free)
trees

I trees per hectare length�2 Density of infested (beetle in-
fested) trees

B beetles per
hectare

length�2 Density of free-flying beetles

A beetles per
hectare

length�2 Density of attacking beetles

R beetles per tree dimensionless Density of attacking beetles per
tree
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from an infested tree, s is the natural mortality rate of healthy
trees, d is the additional tree mortality that results from beetle
infestation, m is the mortality and/or emigration rate of free-
flying beetles, r is the mortality rate of attacking beetles and μ
describes immigration of beetles from outside the stand. If a
tree becomes infested (which occurs at rate β), the number of
attacking beetles per tree (A/S) times the density of trees (S) is
removed from the beetle pool. This yields the last term in the
last equation.

To simplify model analysis, we introduce a change of variables
by noting that model (1) can be conveniently expressed using the
density of attacking beetles per susceptible tree, R¼A/S, rather
than the absolute density of attacking beetles, A. When this is
done, the resulting set of ODEs becomes

⎛
⎝⎜

⎞
⎠⎟

σ β

β σ

λ μ

λ σ

= ( ) − − ( )

= ( ) − −

= − − +

= − ( ) + −
( )

dS
dt

G S I S R S

dI
dt

R S I dI

dB
dt

eI mB BS

dR
dt

B R
G S I

S
r

,

,
.

2

The state variables are summarized in Table 1.

2.1. Tree recruitment, ( )G S I,

To model tree recruitment within a conifer stand, we consider
the recruitment function ( ) = ( − − )G S I g K S I, , where K is the tree
carrying capacity of the forest stand and g is a constant describing
the rate at which new, susceptible trees become available to
beetles. While it might be argued that such a recruitment model is
pathological at S¼0 (as trees have a positive growth rate), it
Table 2
Parameter estimates for Eq. (2) used in this article.

Symbol Definition Units

g Rate of recruitment of new susceptible trees per day

s Death rate of healthy trees per day

d Tree death rate due to infestation per day

e Per tree rate of beetle emergence beetles p
m Death rate of free-flying beetles per day
r Death rate of attacking beetles per day
β0 Maximum rate of infestation of new trees per day
λ Rate at which beetles find trees to attack hectares
K Tree carrying capacity trees pe
μ Immigration beetles p
Γ Beetles per tree necessary for infestation beetles p
should be noted that forests can, over a period of years, exhibit
recruitment in the absence of seed-producing adults as a result of
extensive seed-banks. This is true for conifer forests, since most
tree species are characterized by large, long-lived seed banks. As a
result, tree recruitment is rarely, if ever, limited by the availability
of seed producing adults, although space (e.g., competition for
light) is still restrictive.

2.2. Infestation rate, β ( )R

In keeping with threshold-based mortality models, we assume
that the rate at which susceptible trees transition into the infested
class, β ( )R , exhibits a nonlinear dependence on the number of
attacking beetles per susceptible tree (R). This nonlinearity is one
of the defining features of bark beetle dynamics, and arises from
the fact that most host trees have natural defenses (e.g., resin) that
protect against beetle infestation at low beetle densities, but be-
come rapidly overwhelmed at high beetle densities. Accordingly,
when beetles are scarce, tree infestation rates are depressed re-
lative to what would be expected on the basis of mass action as-
sumptions. To capture this depression mechanistically we assume
a threshold number of attacking beetles per tree (typically de-
pendent on tree resistance), θ, above which infestation succeeds
and below which, infestation fails.

We model infestation rate by the Hill function

β β
Γ

β
Γ

( ) =
+

=
+ ( )−R

R
R R1 3

n

n n n n0
0

where Γ roughly approximates tree resistance, or the threshold
number of beetles required for successful infestation and n is re-
lated to the level of beetle aggregation. In particular, low values of
n represent high levels of aggregation, while high values of n in-
dicate overdispersion (see Appendix C). To see this, consider the
limit → ∞n , wherein β ( )R defined by (3) becomes a step function.
In this limit, an infinitely small increase in beetle density at Γ=R
leads to a sudden transition from a per tree infestation rate of zero
to a per tree infestation rate that is maximal for the system. The
abruptness of this transition implies that the addition of an ex-
ceedingly small number of new beetles causes every tree to cross
the critical infestation threshold simultaneously, which will only
happen if beetles are uniform in their distribution over available
trees (i.e., in the overdispersion limit).

2.3. Model parameters

Model parameters used in this article are summarized in
Table 2. For tree population dynamics, we interpret g as reflecting
the rate at which new susceptible adult trees become available to
beetles per existing tree at carrying capacity. This parameter is
Dimension Approximate values

time�1
–− −10 104 3

time�1
( – ) × −0.5 5 10 5

time�1
× −3 10 3

er tree per day time�1 10–100
time�1 0.05
time�1 0.1
time�1 0.003–0.07

per tree per day length2 time�1 0.001
r hectare length�2 100–10,000
er hectare per day length�2 time�1 0–4000
er tree dimensionless 30–3000



Table 3
Non-dimensionalization scheme.

Symbol Approximate value Symbol Approximate value

λ˜ =S S m/ State variable μ λμ˜ = ( )em/ μ( – )0.0002 0.002

λ˜ =I I m/ State variable ˜ =g g d/ 0.03–0.3

˜ =R rR e/ State variable β β˜ = d/0 0 1–23

λ˜ =B B e/ State variable σϵ = d/1 0.002–0.016

˜ =t dt t0.003 ϵ = d m/2 0.06

λ˜ =K K m/ 15–30 ϵ = d r/3 0.03

Γ Γ˜ = r e/ 0.57–15
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estimated to be approximately 0.05–0.5 years�1 for pine trees
(Clark et al., 2001). Therefore we set = –− − −g 10 10 day4 3 1. Similarly,
because tree species targeted by tree-killing bark beetles can have
lifespans between 50 and 500 or more years, depending on the
geographic region and beetle species, we set
σ = × – ×− − −5 10 5 10 day6 5 1. We assume that beetle infested trees,
on the other hand, will produce beetles for approximately 1 year.
Thus we set the rate of tree death due to beetle infestation at

= × − −d 3 10 day3 1. The length of time before the susceptible tree
transfers to the infested class is estimated to range between two
weeks and one year and hence β0 ranges from approximately
0.003–0.07 day�1. The threshold for succumbing to attack for
healthy trees is approximately 10–100 beetles per m2 of bark area
(Lewis et al., 2010). If a tree were between 10 and 20 m tall and
had an average diameter between 0.1 and 0.5 m, then its surface
area would range between π and πm10 2. This would mean that the
threshold for succumbing to beetle attack would range between

π10 and π1000 , i.e., 30–3000 beetles per tree. We assume that tree
carrying capacity K is between 100 and 10,000 trees/ha for un-
managed forests (Baker, 2009).
2.4. Non-dimensionalization

We can reduce the number of free parameters through non-
dimensionalization. Using the non-dimensionalization schemes
outlined in Table 3 gives

β
Γ

β
Γ

μ
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where ˜ ( ˜ ˜)G S I, is the non-dimensionalized recruitment function
˜ ( ˜ ˜) = ˜( ˜ − ˜ − ˜)G S I g K S I, . Table 3 gives values for dimensionless
parameters that correspond to those from Table 2.
2.5. Pseudo-steady state approximation

In general, the dynamics associated with beetle processes, in-
cluding beetle mortality and tree death due to infestation, are
significantly faster than natural tree dynamics. As a result, for
realistic parameter values (see, for example, Table 3), it will always
be true that < ϵ ϵ ϵ ⪡0 , , 11 2 3 . This allows us to make a pseudo-steady
state approximation on (4). Specifically, taking the limit as
ϵ ϵ ϵ →, , 01 2 3 we find (in what follows we drop tildes for notational
simplicity)
μ= +
+

= ( )

B
I

S

R B

1
5

and
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β β μ
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I S
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1
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7

n

n n n0

2.6. Scenario one: uniform beetle distribution

We begin our analysis by studying the behavior of the
model in the limit that beetles distribute uniformly over
available trees (i.e., all trees are equally susceptible and there is
no aggregating pheromone). To do this, we take → ∞n in (7), in
which case, the infestation rate, β ( )S I, , becomes a step func-
tion. Specifically,

⎧
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μ Γ

β μ Γ
( ) =

+
+

<

+
+

>
( )

S I

I
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I
S

,
0 if

1

if
1

.
80

From (8) we see that the minimum number of infested trees
necessary for beetle spread, Imin, can be expressed in terms of
the number of susceptible trees, S, according to the expression

Γ μ( ) = ( + ) − ( )I S S1 . 9min

This threshold is shown by the solid line in Fig. 1C, E. It reflects
the fact that, if beetles distribute uniformly over available
trees, then when there are more susceptible trees, proportio-
nately more beetles are needed to overcome the threshold
requirement for infestation. Importantly, when the total
number of infested trees falls below the critical threshold for
infestation, <I Imin, model (6) becomes

= ( )

= − ( )

dS
dt

G S I

dI
dt

I

,

. 10

The equilibrium solution of (10) is ( ) = ( )S I K, , 0 . Provided tree
resistance is not so small that it can be overcome by beetle
immigration from outside, μ Γ( + ) <K/ 1 , this equilibrium so-
lution satisfies < ( )I I Smin (Fig. 1C, E), it is also the solution to
the full system (6), suggesting that long-term dynamics are
complete forest recovery and local extinction of beetle popu-
lation. We remark that when there is no immigration μ( = )0 ,
this is the only possible case. When tree resistance is not suf-
ficient to protect against immigrating beetles, Γ μ< ( + )K/ 1 , the
equilibrium solution of (10) does not fall in the region

< ( )I I Smin (Fig. 1A). This is because the solid line from panels C
and E shifts to the right of point ( )K , 0 (and it is thus outside of
panel A).

In the part of the phase space where > ( )I I S ,min model (6)
becomes

β

β

= ( ) −

= − ( )

dS
dt

G S I S

dI
dt

S I

,

. 11

0

0



Fig. 1. These plots show trajectories of model (6) for uniform beetle distribution (β is given by (8)) (left panels) and aggregated beetle distribution (β is given by (7) with
n¼10) (right panels). Panels A and B assume low tree resistance (Γ¼30), panels C and D assume intermediate resistance (Γ¼300), and panels E and F assume high resistance
(Γ¼450). The solid line in panels C and E is the threshold Imin for infestation given by (9) above which beetle spread in the forest. The dotted line is the isocline for susceptible
trees and the dashed line is the isocline for infested trees. The black dot denotes a locally stable equilibrium, while the gray dot denotes an unstable equilibrium. Other
untransformed parameters are g¼0.001, d¼0.003, m¼0.05, β = 0.010 , μ = 2000, K¼100. For simulations these parameters were non-dimensionalized following scheme in
Table 3.
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Table 4
Locally stable equilibria for uniformly dispersing beetles and unlimited tree
recruitment.

Name Equilibrium Resistance Figure

Endemic ⎛
⎝⎜

⎞
⎠⎟β β+ +

β
β β+ +

gK
g g

,
gK

g g0 0

0
0 0

Γ μ<
+ K1

1A

Beetle-free/
endemic

( )K , 0 ,
⎛
⎝⎜

⎞
⎠⎟β β

β
β β+ + + +

gK
g g

gK
g g

,
0 0

0

0 0

μ Γ Γ
+

< < *
K1

a 1C

Beetle-free ( )K , 0 Γ Γ* < 1E

a Γ* is given by (13).

Fig. 2. Dependence of the equilibrium infestation *I on the transformed stand
resistance. This figure documents hysteresis in the forest dynamics. Untransformed
parameters: g¼0.001, d¼0.003, m¼0.05, β = 0.010 , μ = 2000, K¼1000. For simu-
lations these parameters were non-dimensionalized following scheme in Table 3.
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For ( ) = ( − − )G S I g K S I, , (11) has a single endemic equilibrium at

⎛
⎝⎜

⎞
⎠⎟β β

β
β β

( * *) =
+ + + + ( )

S I
gK

g g
gK

g g
, , .

120 0

0

0 0

Provided tree resistance is not too high and satisfies

Γ Γ
β μ β β
β β

< * =
+ ( + + )
+ + + ( )

gK g g
g g gK

,
13

0 0 0

0 0

this equilibrium is in the part of the phase space where > ( )I I Smin ,
and it is locally asymptotically stable there (see Appendix A).

For stressed stands that are subject to a relatively large and
constant influx of beetles, i.e., Γ μ< ( + )K/ 1 , the endemic
equilibrium ( * *)S I, (Fig. 1A) is the only locally asymptotically
stable equilibrium. However, when tree resistance is inter-
mediate and satisfies μ Γ Γ( + ) < < *K/ 1 (we remark that for all
parameter values μ Γ( + ) < *K/ 1 ) there are two locally
asymptotically stable equilibria: the beetle free equilibrium
( )K , 0 and the endemic equilibrium ( * *)S I, (Fig. 1C). Conse-
quently, whether the forest survives or not will depend on its
history. Specifically, a fully grown forest with tree densities
nearing the forest carrying capacity will be able to resist
beetle invasion, whereas a more sparsely populated forest
with tree densities well below carrying capacity will not.
Notice that this is somewhat counterintuitive, since dense
forests provide ample trees for beetles to attack. This, how-
ever, is the problem. For uniformly distributing beetles, large
numbers of trees dilute the beetle population such that no
tree has sufficient beetle loads to become infested. In less
dense stands, the dilution effect is not so strong, and there are
enough beetles per tree to mount successful attacks. In this
system, a large perturbation to the beetle free equilibrium, for
example a significant but temporary influx of beetles, can
move the system across the line = ( )I I Smin (solid line in
Fig. 1C) that divides the two stable states. Ultimately, this
means that a one-time influx of beetles can potentially cause
the forest to evolve toward the beetle endemic state. For
smaller beetle influxes, however, the system will not cross the
separatrix, thus once the influx has ceased, the system will
return to its initial, beetle-free state. When the tree resistance
Γ exceeds Γ* the beetle free equilibrium ( )K , 0 is the only
asymptotically stable equilibrium and the beetle-free stand
will be immune to beetle invasions (Fig. 1E). These results are
summarized in Table 4. Importantly, intermediate stand re-
sistance that results in bistability leads to a hysteresis loop
(Fig. 2). When model parameters change slowly, which of the
two locally stable equilibria the system finds itself in may
depend upon the path taken. For example, Fig. 2 considers
dependence of the equilibrium infestation on the stand re-
sistance. Let us assume that the stand resistance is high. Then
the only equilibrium is the beetle-free forest. As the resistance
decreases, the situation will continue to be the same until the
lower critical threshold μ ( + )K/ 1 is reached. If the resistance
keeps decreasing, there is a sudden jump in the number of
infested trees because for low resistance the endemic equili-
brium is the only possible state of the forest. Now, let us as-
sume that the resistance starts to increase. The forest will stay
in the endemic state until resistance reaches the upper
threshold given by Γ*. For yet higher resistance the beetle-
free forest is the only equilibrium.

Because model (6) with uniform beetle distribution modeled
by (8) is a differential equation with a discontinuous right-hand
side, solutions are defined in the Filippov sense (Filippov, 1988;
Colombo and Křivan, 1993). To ensure existence of solutions, we
must analyze what happens along the switching line (9).
Appendix B shows that there are two possibilities only. Either
trajectories cross the switching line transversally, or trajectories
move away from the switching line in both directions (such
points are shown e.g., in Fig. 1C). In this latter case trajectories of
the model are not uniquely defined. Thus, the so-called sliding
regime does not occur and there are no additional equilibria
along the switching line.

2.7. Scenario two: aggregated beetle distribution

To model a nonuniform distribution of beetles over available
trees, we take n finite and not too large in (7). Most notably, the
basis of attraction for the endemic state at intermediate tree re-
sistance shifts to the right (compare Fig. 1C with Fig. 1D). The
suggestion is that beetles can attack and kill trees in forest stands
with higher tree densities when they exhibit aggregative beha-
vior. This, of course, makes intuitive sense. Aggregation coun-
teracts beetle dilution across higher density stands. As a result,
the beetle per tree threshold required for infestation is more
likely to be met by aggregating beetles, even in stands with large
numbers of trees.
3. Two-stand model

The goal in this section is to derive and analyze a model that
gives qualitative understanding of how a regional beetle outbreak
may be facilitated by a three step process: (i) infestation of highly
stressed or compromised trees, who have little resistance to the
beetles; (ii) build up of beetle density in these trees and sub-
sequent spread to surrounding healthy trees; (iii) increase in
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beetle levels in surrounding healthy trees exceeding a threshold
and these trees succumbing to become part of the spreading
epidemic.

We consider two forest stands coupled by beetle dispersal.
Because we are interested in the role of beetle spillover between
stands, we consider forest stands that only differ in terms of re-
sistance, Γ, and beetle influx from other, more distant sources.
Thus model (2) can be extended as follows:
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where β β( ) =
Γ +

Ri i
R

R0
i
n

i
n

i
n , ( ) = ( − − )G S I g K S I,i i i i i i i and we have as-

sumed that all beetles dispersing from the first stand arrive at the
second and vice versa (i.e., they are neither going to nor coming
from additional stands) with dispersal rate δ > 0. In addition, there
can be stand specific immigration from outside of the two stands
(μi). Notice that we have not assumed any seed rain between the
stands, thus we are considering stands that are geographically
distant enough that seed transfer is negligible, however not so
distant as to prevent beetles migrating from one stand to the
other. Using a direct extension of the non-dimensionalization
scheme in Table 3, Eq. (14) can be rewritten as
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where δ δ˜ = m/ .
Again, taking the limit as ϵ ϵ ϵ →, , 01 2 3 we find the following

model under the pseudo-steady state approximation:
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and tildes have been dropped for notational simplicity.
We analyze the two-stand model by again studying model

behavior in the limit that beetles distribute uniformly over avail-
able trees ( → ∞n in (17)). As before, this leads to step function
infestation rates, β ( )S I S I, , ,i i i j j , with
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and similarly for β2. From (18), the minimum number of infested
trees necessary for beetle spread in stand 1, Imin,1, is calculated
from equation
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Similar calculations for stand 2 give the critical threshold
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We observe that, due to dispersal, the minimum threshold for
infestation to spread in one stand depends on the state of the
other stand, i.e., Imin,1 depends on S2 and I2 and, similarly, Imin,2

depends on S1 and I1.
To interpret stand dynamics we consider three possibilities:

(a) beetle establishment does not occur in either stand ( <I Imin1 ,1,
<I Imin2 ,2), (b) beetle establishment occurs only in one stand and

not in the other (here we assume that establishment occurs in
stand 1, i.e., >I Imin1 ,1, <I Imin2 ,2), and (c) beetle establishment oc-
curs in both stands ( >I Imin1 ,1, >I Imin2 ,2).

In the first case, when the beetle population does not reach
threshold densities in either stand ( <I Imin1 ,1, <I Imin2 ,2), model
(16) reduces to
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The only stable equilibrium of (19) is the beetle-free equilibrium
( * * * *) = ( )S I S I K K, , , , 0, , 01 1 2 2 1 2 . This will be a solution to the full system
(16) (i.e., belongs to the part of the beetle-free–infested tree phase space
where ( ) > = *I K K I, , 0 0min i i, 1 2 , i¼1, 2) provided tree resistance in both
stands is high enough such that Γ Γ> a1 1 and Γ Γ> a2 2 (for definition of
these and other thresholds below see the footnote of Table 5).

We note that, without any immigration from outside (i.e., when
μ = 0i , i¼1, 2), the beetle-free state will always exist (as we as-
sume that tree resistance is positive, i.e., Γ > 0i , i¼1, 2). Sufficient
outside immigration to either stand may cause the beetle-free
state to disappear in one or both of the stands.

When only the first stand crosses the threshold for infestation
( >I Imin1 ,1, <I Imin2 ,2), (16) can be written as
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Notice that (20) is just a combination of (10) and (11), thus the
equilibria of (20), as well as their stability, can be determined directly
from the one-stand model. Stand 1 will converge to the endemic
equilibrium given by (12) and stand 2 to a beetle-free forest
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2

The above stand-one endemic/stand-two beetle-free equilibriumwill
be a solution to the full system (16) (i.e., belongs to the part of the
beetle-free–infested tree phase space where * > ( * * *)I I S S I, ,min1 ,1 1 2 2 and
* = < ( * * *)I I S S I0 , ,min2 ,2 1 2 1 ) provided Γ Γ< b1 1 and Γ Γ> .b2 2 In other
words, (21) is an equilibrium provided tree resistance in stand 1 is
low while tree resistance in stand 2 is high.

Finally, in the case that both stands cross the threshold for
Table 5
Two-stand results for uniformly dispersing beetles.

Name Equilibrium
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establishment ( >I Imin1 ,1, >I Imin2 ,2), model (16) becomes

β

β

β

β

= ( ) −

= −

= ( ) −

= − ( )

dS
dt

G S I S

dI
dt

S I

dS
dt

G S I S

dI
dt

S I

,

,

. 22

1
1 1 1 0 1

1
0 1 1

2
2 2 2 0 2

2
0 2 2

Again, the equilibria for (22) as well as their stability can be de-
termined directly from results for the one-stand model. The en-
demic equilibrium in both stands
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will be a solution to the full system (16) (i.e., belongs to the part of
the healthy–infested tree phase space where * > ( * * *)I I S S I, ,min1 ,1 1 2 2

and * > ( * * *)I I S S I, ,min2 ,2 1 2 1 ) provided Γ Γ< c1 1 and Γ Γ< c2 2. In other
words, (23) is an equilibrium provided tree resistance in both
stands is low. Table 5 summarizes these results.

The effect of beetle dispersal between patches is shown in
Fig. 3. Here we focus on the following scenario: stand 1 has a lower
resistance when compared to stand 2, and there is external im-
migration of beetles from outside of the system to stand 1 only.
Thus, stand 2 can become infested only as a result of beetle dis-
persal from stand 1, i.e., stand 1 serves as a springboard to infest
patch 2. Parameters are such that when immigration to stand 1 is
low both stands are in a beetle-free state because resistance is
sufficiently high in stand 1 to prevent invasion of beetles. Thus,
when immigration is low, we observe a stable equilibrium
( )K K, 0, , 01 2 (Fig. 3A, B). As immigration to stand 1 increases, stand
1 shifts to the endemic equilibrium while stand 2 stays beetle-free
(Fig. 3C, D). For yet higher immigration rates to stand 1 both
stands shift to the endemic equilibrium (Fig. 3E, F).
4. Discussion

4.1. Summary

This paper focuses on the formulation and analysis of a general
model for bark beetle outbreaks in continuous time. By capitaliz-
ing on the fact that there are multiple time scales involved in the
system, we are able to derive a simplified dynamical system that
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Fig. 3. The springboard effect of stand 1 on the beetle outbreak in stand 2. These plots assume that beetles disperse between two forest stands and there is an allochthonous
beetle inflow to stand 1 (but not to stand 2). Stand 1 has a lower resistance (Γ = 301 ) when compared to stand 2 (Γ = 2002 ). When immigration of beetles to stand 1 from
outside of the system is relatively small (panels A, B; μ = 1001 , μ = 02 ), both stands stay at the beetle-free state. For intermediate immigration rates to stand 1 (panels C, D;
μ = 10001 , μ = 02 ), stand 1 shifts to the endemic equilibrium (12) while stand 2 stays at the beetle-free state. For high immigration rates to stand 1 (panels E, F; μ = 40001 ,
μ = 02 ), both stands shift to the endemic equilibrium. Besides the above differences, both stands are assumed to be identical. The curve is a trajectory of model (16) when
beetles distribute uniformly over available trees. The black dot denotes a locally stable equilibrium, while the gray dot denotes an unstable equilibrium. Untransformed
parameters used for simulations: β = 0.010 λ λ= = 0.001,1 2 = =g g 0.001,1 2 = =r r 0.11 2 , = =m m 0.05,1 2 = =d d 0.003,1 2 = =K K 100,1 2 δ = 10, e¼10. For simulations these
parameters were non-dimensionalized following scheme in Table 3.
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describes the bark beetle population dynamics over long time
scales. Further simplifications using ideas from piecewise dy-
namics and Filippov dynamical systems (Filippov, 1988; Colombo
and Křivan, 1993) allow us to mathematically deduce several key
properties of the dynamical model. These include

� Bistability of the forest dynamics arising from a threshold effect
with respect to beetle numbers. Here the beetle numbers must
exceed a critical value determined by tree resistance to infest
healthy trees. Although such threshold effects have been in-
cluded in previous beetle models, ours is a mechanistically
derived threshold, based on tree resistance. Most clearly this is
seen in the case of the uniform beetle distribution where the
threshold for the invasion splits the forest phase space into two
parts, each with its own population dynamics (see the two re-
gions separated by the solid line in Fig. 1C). In one region the
beetle-free forest is a locally stable equilibrium. In the other
part of the phase space an endemic equilibrium is a locally
stable equilibrium. The position of these equilibria with respect
to the threshold value depends on parameters. However, for
parameters that allow coexistence of the beetle-free forest
equilibrium and the endemic equilibrium, we get bistability.
Depending on the history, the forest can respond to a beetle
immigration event either by returning to the beetle-free state,
or to move to the endemic state. Bistability carries over also to
the case where dispersing beetles show aggregative distribu-
tion, modeled by a more gradual Hill function (cf. Fig. 1C and D).

� Hysteresis: The model bistability naturally leads to hysteresis
effects. These are most easily understood in terms of changes in
the stand resistance as illustrated in Fig. 2. The lower threshold
value for resistance in the hysteresis loop is μ ( + )K/ 1 and the
higher value is Γ* (see Eq. (13)). These quantities can be directly
interpreted in terms of the biological parameters describing the
interaction between trees and beetles (Table 2).
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� Interactions between multiple patches: Here multiple patches
that are spatially linked can interact to produce new outcomes.
For example, a less healthy patch of trees may provide a
beachhead for the infestation process. Once established, the
beetles can then build up in numbers before progressing to
neighboring healthy patches of trees, patches that would
otherwise be unassailable, and causing them to succumb. These
kinds of complex outcomes are illustrated in Fig. 3.

� Our model with unlimited tree recruitment rate would be in-
appropriate for forests that experience complete loss of adult
trees over periods longer than the viability of the seed-bank. For
this reason we also analyzed the model with the logistic growth
(results not showed here). On the contrary to the unlimited
recruitment where the forest cannot completely die, the logistic
tree recruitment rate has also an extinction equilibrium. In
particular, when a forest stand shows a low regeneration rate, as
given by the ratio between the rate at which trees become
available to beetles relative to the rate at which beetles remove
the trees, the stand can go extinct.

4.2. Model limitations

In model (1) we have made several simplifying assumptions
that, though reasonable in many outbreak contexts, will not hold
under all scenarios. First, we have taken the rate at which beetles
encounter trees, λ, as constant, implying that contact rates be-
tween beetles and trees follow a simple mass action law. In reality,
however, encounter rates likely exhibit some dependence on both
beetle and tree density as well as beetle characteristics, including
species-specific search strategies and aggregation behaviors
(Mitchell and Preisler, 1991; Safranyik et al., 2010; Powell and
Bentz, 2014). Second, we have assumed that the total number of
beetles emerging from a tree is independent of the total number of
beetles that infested the tree in the first place. More accurately, the
rate of emergence should be lower when the number of attacking
beetles is far from the carrying capacity of the tree (Light et al.,
1983; Anderbrant et al., 1985). Third, we have assumed that the
rate at which beetles are killed by host tree defenses, r, is in-
dependent of the number of attacking beetles per tree. Realisti-
cally, however, the death rate of beetles on trees nearing the
threshold for infestation is probably lower than it is on trees with
one or a few beetles (Raffa and Berryman, 1983). Furthermore, the
threshold, itself, is assumed to be a fixed number, describing the
exact number of beetles per tree needed to mount a successful
attack. In reality, natural variation between trees would round off
this sharp threshold to something more gradual. Fourth, the ne-
gative binomial model for beetle attacks necessarily oversimplifies
the aggregation process. We are aware that other researchers have
developed spatially explicit model with a focus on determining
specific attack locations (see, for example, Logan et al., 1998).
However, we keep our model spatially implicit by using the ne-
gative binomial probability mass function to provide a phenom-
enological description. This approach has been used before as a
baseline probability mass function for the attack density in
mountain pine beetle (Chubaty et al., 2009). For generality, we
have chosen to model the dynamics in continuous time, although
it may be that discrete-time models provide a more accurate de-
scription of dynamics, particularly in scenarios where generations
are strongly non-overlapping (e.g., species or regions where bee-
tles are univoltine). Additionally, factors such as environmental
stochasticity and interactions with tree signaling chemicals will
play a role in the outbreak dynamics.

4.3. Model extensions

Our modeling approach assumed that each stand comprised of
a cohort of identical trees. Thus any variation between trees was
relegated to the variation found between different stands situated
at different locales. In fact, stands are typically composed of sev-
eral groups of trees, each group with different resistance to in-
festation and different rate of beetle production. It would be
possible to extend the model to include such cases. This would
allow us to evaluate the effect of stand structure on beetle out-
break. Some initial attempts in this direction can be found in Lewis
et al. (2010), Powell and Bentz (2014) and Duncan et al. (2015).
Indeed, it is well known that factors influencing bark beetle in-
festation are related to stand age and stage. When the character-
istics of each group within a stand are determined by age or stage,
it is necessary to include stage structure in the underlying dyna-
mical model for the tree population (Koch et al., personal com-
munication). Our analysis that focused on the simplified system
where beetles distribute uniformly leads to general insight that
also may apply to the more complex system with clumped beetle
populations. For clumped beetle populations the piece-wise linear
analysis applied here is not possible and numerical simulations
will be necessary to falsify our predictions.

4.4. Concluding remarks

In summary, our paper has focused on model development and
analysis for the dynamics of bark beetle infestation of trees, where
tree resistance and beetle aggregation have key roles to play in the
infestation outcomes. By carefully formulating a detailed model,
and then using perturbation theory to distinguish between the
different time scales involved in the infestation process, we are
able to derive a remarkably simple system of nonlinear ordinary
differential equations for outbreak dynamics. These are further
simplified in the limit associated with uniform dispersal of beetles,
which gives rise to a Filippov-type dynamical system. Resulting
bistable dynamics lead to hysteresis, and the multiple patch dy-
namics lead to the possibility of less resistant tree populations
providing a toe-hold for beetles, from which they build up and
eventually outbreak, causing the healthier patch to succumb. By
estimating model parameters, based on beetle and tree biology,
we are able to show that such behaviors fall within the range of
reasonable parameter values.
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Appendix A. Local stability analysis

Model (11) defines a linear system with matrix
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Because the trace of A is given by β( ) = − − −A gTr 1 0, while the
determinant of A is given by β β( ) = + +A g gDet 0 0, both eigenva-
lues of A have negative real parts for positive parameter values.
Accordingly, the endemic equilibrium (12) will be asymptotically
stable.
Appendix B. Behavior of trajectories of model (6) and (8) along
the discontinuity line

We study behavior of trajectories along the switching line
Γ μ= ( + ) −I S1 . The gradient vector to this line is Γ= { − }n , 1 .

Let f1 denote the right-hand side of (10) and f2 denote the right-
hand side of (11), respectively. Then

β Γ〈 〉 = 〈 〉 + ( + )n f n f S, , 1 ,2 1 0

where 〈 〉.,. denotes the scalar product. It follows that if 〈 〉 >n f, 01
then 〈 〉 >n f, 0,2 or, similarly, if 〈 〉 <n f, 02 then 〈 〉 <n f, 0.1 These are
the conditions that exclude the possibility where 〈 〉 >n f, 01 and
〈 〉 <n f, 0.2 In other words, trajectories of model (6) are never pu-
shed both from above and from below to the switching line. This
also shows that no “sliding regime” sensu Filippov (1988) (see also
Colombo and Křivan, 1993) occurs. Additionally, no locally stable
equilibria can exist at the switching line.
Fig. C1. Comparison of the rate of infestation of new trees (C.1) (dots) and its ap-
proximation by the Hill model (3) (line). Model (C.1) assumes a Negative Binomial
distribution with θ = 1000 and dispersion parameter k¼7 in panel A and k¼50 in
panel B. Model (3) assumes Γ = 1000 and n¼4 in panel A and n¼10 in panel B. In
both panels β = 0.010 .
Appendix C. Relation between beetle aggregation and steep-
ness of the Hill function

We assume that a critical number of beetles, θ, are needed to
overcome tree defenses. Therefore the probability that any given
tree is overcome by the beetles can be determined by evaluating
the probability that the random variable X, that describes the
number of beetles per tree, is greater than θ. When θ>X , tree
infestation occurs at rate β ,0 and no trees become infested when

θ≤X . Defining, ( ) = { ≤ | ¯ = }F x R X x X R, Pr as the lower tail of the
cumulative distribution function F with the mean of the random
variable X equal to X̄ , we observe that

θ θ{ > | ¯ = } = − ( )X X R F RPr 1 , . Our assumption that trees are in-
fested at rate β0 when θ>X , and that no trees become infested
when θ≤X gives the rate of infestation of new trees, β ( )R , in
terms of θ( )F R, as

β β θ( ) = ( − ( )) ( )R F R1 , . C.10

Beetle random dispersal is often described by a Poisson dis-
tribution Pois(R). We do not include the specifics of active ag-
gregation with respect to pheromones in the analysis. An approach
pioneered for insects by Waters (1959) and popularized by May
(1978) subsumes the spatial and behavioral complexities that lead
to patterns of aggregation into the single phenomenological as-
sumption that the net distribution of attacks upon hosts is of ne-
gative binomial form. Although this was initially developed for
parasitoids rather than bark beetles, the underlying modeling
philosophy is the same. In this case the Negative Binomial dis-
tribution has mean ¯ =X R and dispersion parameter k, and is de-
noted by ( )NB R k, . Unfortunately, because θ( )F R, is a complex
cumulative distribution function, it creates difficulties in terms of
model analysis. We therefore replace θ( )F R, in (C.1) with a Hill
function capable of caricaturing the cumulative distribution
function (Fig. C1). We do not claim that the Hill function is a
perfect approximation for the cumulative distribution function for
the negative binomial, only that it is an appropriate caricature for
the degree of precision needed for the modeling at hand. Para-
meter Γ in the Hill function (3) approximates the threshold
number of beetles required for successful infestation, θ, while n
plays a role similar to the dispersion parameter, k. In particular,
low values of n represent high levels of aggregation, while high
values of n indicate overdispersion (see Fig. C1). If, for example, we
assume that successful colonization of moderate size trees re-
quires θ = 1000 beetles per tree, then by comparing the Hill
function in Eq. (3) to the expression that it approximates in Eq.
(C.1) and assuming either the Negative Binomial or Poisson dis-
tribution for θ( )F R, , we can find the value of n and Γ that best
approximates the beetle distribution. The right panel of Fig. 1
shows the case when n¼10. Note that the qualitative behavior is
similar to that of the uniform beetle scenario although the quan-
titative details differ.
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